Infinite Limits

Consider a function like \(f(x) = \frac{1}{x^2}, x \neq 0 \). We find that numbers \(x \) close to 0 give values \(f(x) \) that are large and positive. For example

\[
\begin{align*}
 f(0.1) &= 100 & f(-0.04) &= 625 & f(0.0005) &= 4000000
\end{align*}
\]

In such a case, we say that \(f(x) \) approaches \(\infty \) as \(x \) approaches 0 and write \(\lim_{x \to 0} f(x) = \infty \). But do not interpret this to mean that there is a real number \(\infty \) with the property that \(|f(x) - \infty| \to 0 \) as \(x \to \infty \). These statements simply mean numbers \(x \) close to 0 give values \(f(x) \) that are large and positive.

Say we change the sign of \(\frac{1}{x^2} \) and let \(g(x) = -\frac{1}{x^2} \). We find that numbers \(x \) close to 0 give values \(g(x) \) that are large and negative. For that reason, we say that \(g(x) \) approaches \(-\infty \) as \(x \) approaches 0 and write \(\lim_{x \to 0} g(x) = -\infty \). Once again, we are not saying that there is a real number \(-\infty \) with the property that \(|f(x) - (-\infty)| \to 0 \) as \(x \) approaches 0. We write \(\lim_{x \to 0} g(x) = -\infty \) to convey the message that numbers \(x \) close to 0 give values \(g(x) \) that are large and negative.

We summarize these in an intuitive definition:

Definition 1 Let \(f \) be a given function and \(c \) be a number which need not be in the domain of \(f \).

1. We say that \(f \) has limit \(\infty \) as \(x \) approaches \(c \), and write \(\lim_{x \to c} f(x) = \infty \), if numbers \(x \) close to \(c \) give values \(f(x) \) that are large and positive.

2. We say that \(f \) has limit \(-\infty \) as \(x \) approaches \(c \), and write \(\lim_{x \to c} f(x) = -\infty \), if numbers \(x \) close to \(c \) give values \(f(x) \) that are large and negative.

We can have infinite one-sided limits as the next example shows.

Example 2 Let \(h(x) = \frac{x + 1}{x - 2}, x \neq 2 \). If \(x \) is close to 2 and is to the right of 2 then \(h(x) \) is a large positive number. For example,

\[
\begin{align*}
 h(2.005) &= 601, & h(2.001) &= 3001, & h(2.00002) &= 15001, & h(2.0000001) &= 30000001
\end{align*}
\]

Because of this, we say that \(h(x) \) approaches \(\infty \) as \(x \) approaches 2 from above, and write

\[
 h(x) \to \infty \text{ as } x \to 2^+ \quad \text{or} \quad \lim_{x \to 2^+} h(x) = \infty.
\]

On the other hand, if \(x \) is close to 2, and is to the left of 2 then \(h(x) \) is a large negative number. For example,

\[
\begin{align*}
 h(1.9905) &= -314.79, & h(1.995) &= -599, & h(1.9999998) &= -15000000
\end{align*}
\]

We say that \(h(x) \) approaches \(-\infty \) as \(x \) approaches 2 from below, and write

\[
 h(x) \to -\infty \text{ as } x \to 2^- \quad \text{or} \quad \lim_{x \to 2^-} h(x) = -\infty.
\]
Limit as x Approaches ∞ or $-\infty$

We start with limits as x approaches infinity. Only a function that is defined for all large positive numbers can have a limit as x approaches ∞. Let f be such a function. If every large positive number x gives a value $f(x)$ close to a single number l, then we say that f has limit l as x approaches ∞, and write $\lim_{x \to \infty} f(x) = l$.

Example 3 Consider $f(x) = \frac{1}{x^2}$. When x is large and positive, then x^2 is a very large positive number, and so, its reciprocal is close to 0. In other words, when x is large and positive then $\frac{1}{x^2}$ is close to 0, therefore $\lim_{x \to \infty} \frac{1}{x^2} = 0$.

Example 4 Let g be defined by $g(x) = \frac{3x + 1}{x + 2}, x \neq -2$. Then $\lim_{x \to \infty} g(x) = 3$. To see this, note that when x is large and positive, the dominant term in the numerator is $3x$ and the dominant term in the denominator is x, therefore $\frac{3x + 1}{x + 2}$ must be close to $\frac{3x}{x} = 3$. Another way of arriving at the same result is to divide the numerator and denominator of $\frac{3x + 1}{x + 2}$ by x, (the highest power of x in the denominator). The result is $\frac{3 + \frac{1}{x}}{1 + \frac{2}{x}}$. When x is large and positive, both $\frac{1}{x}$ and $\frac{2}{x}$ are small numbers close to 0, hence $\frac{3 + \frac{1}{x}}{1 + \frac{2}{x}}$ should be close to $\frac{3 + 0}{1 + 0} = 3$. Therefore $\lim_{x \to \infty} \frac{3x + 1}{x + 2} = 3$.

Limit as x Approaches $-\infty$

Only a function that is defined for all large negative numbers can have a limit as x approaches $-\infty$. Let f be such a function. If every large negative number x gives a value $f(x)$ close to a single number l, then we say that f has limit l as x approaches $-\infty$, and write $\lim_{x \to -\infty} f(x) = l$.

Example 5 Let $f(x) = 2^x$. Then $\lim_{x \to -\infty} f(x) = 0$.

Example 6 Let $f(x) = \frac{2^x - 2^{-x}}{2^x + 2^{-x}}$. When x is large and negative, the dominant term in the formula for f is 2^{-x}. Divide the numerator and denominator by 2^{-x} to get $f(x) = \frac{2^x - 1}{2^x + 1}$. Since 2^x is close to 0 when x is large and negative, it follows that $\lim_{x \to -\infty} f(x) = \frac{0 - 1}{0 + 1} = -1$.

Exercise 7

1. By definition, integer(x) denotes the integer part of x. Thus integer$(5.79) = 5$ (simply throw away the decimal part), integer$(0.99) = 0$, integer$(-0.835) = 0$, integer$(-2.01) = -2$, etc. Consider the function $f(x) = \text{integer}(x)$.

 (a) Determine the following:

 i) $\lim_{x \to -2^+} f(x)$ ii) $\lim_{x \to -2^-} f(x)$ iii) $\lim_{x \to -5^+} f(x)$ iv) $\lim_{x \to -5^-} f(x)$

 (b) Give a formula for $\lim_{x \to n^+} f(x)$ and $\lim_{x \to n^-} f(x)$ when n is a positive integer. Repeat when n is a negative integer.

2. Let $g(x) = x \text{integer}(x)$.
(a) Determine the following:

\[\lim_{x \to 0^+} g(x) \quad \lim_{x \to 0^-} f(x) \quad \lim_{x \to 0^+} g(x) \quad \lim_{x \to 0^-} g(x) \]

(b) Give a formula for \(\lim_{x \to n^+} g(x) \) and \(\lim_{x \to n^-} g(x) \) when \(n \) is an integer.

3. Draw the graph of \(h(x) = \begin{cases} 3 - 2x & \text{if } x < 1 \\ 4 + x & \text{if } x \geq 1 \end{cases} \) then determine the following limits:

\[\lim_{x \to 1^-} h(x) \quad \lim_{x \to 1^+} h(x) \quad \lim_{x \to 1^+} h(x) \quad \lim_{x \to 1^-} h(x) \]

4. The expression \(|x| \) denotes the largest integer that is smaller than or equal to \(x \). For example,

\[[6.21] = 6, \quad [0.92] = 0, \quad [-3] = -3, \quad [17] = 17, \quad [-0.2] = -1. \]

(a) Draw the graph of \(f(x) = |x| \) for values of \(x \) between \(-5\) and \(4\).

(b) Determine \(\lim_{x \to 2^+} f(x) \) and \(\lim_{x \to 2^-} f(x) \).

(c) Determine \(\lim_{x \to 3^+} f(x) \) and \(\lim_{x \to 3^-} f(x) \).

(d) Give a formula for \(\lim_{x \to n^+} f(x) \) and \(\lim_{x \to n^-} f(x) \) when \(n \) is an integer.

5. Let \(f(x) = |x| \), (the largest integer that is smaller than \(x \)), and \(g(x) = xf(x) \).

(a) Determine \(\lim_{x \to -1^+} g(x) \) and \(\lim_{x \to -1^-} g(x) \).

(b) Determine \(\lim_{x \to n^+} g(x) \) and \(\lim_{x \to n^-} g(x) \) where \(n \) is an integer.

(c) Determine \(\lim_{x \to a^+} g(x) \) and \(\lim_{x \to a^-} g(x) \) where \(a \) is a real number which is not an integer.

6. Let \(f(x) = \frac{x^2 + 1}{x + 1}, x \neq -1 \). Determine \(\lim_{x \to -1^+} f(x) \) and \(\lim_{x \to -1^-} f(x) \).

7. Let \(g(x) = \frac{1}{x^2}, x \neq 0 \). Determine \(\lim_{x \to 0^+} g(x) \) and \(\lim_{x \to 0^-} g(x) \).

8. Let \(f(x) = \frac{3x - 3 - x}{3x + 3 - x} \). Determine \(\lim_{x \to +\infty} f(x) \) and \(\lim_{x \to -\infty} f(x) \).

9. Neural tissue can be electrically excited if the current across the cell membrane exceeds the threshold current. The threshold current \(I \) is related to the duration of time \(t \) that current flows across the membrane by the equation

\[I(t) = \frac{a}{t} + b, \ t > 0 \]

where \(a \) and \(b \) are positive constants. Sketch the graph of \(I \) then determine and give the physical interpretation of: (i) \(\lim_{x \to 0^+} I(t) \) and (ii) \(\lim_{x \to \infty} I(t) \).

10. **A precise definition of an infinite limit**: Say we have to show that \(f(x) = \frac{1}{(x - 2)^2} \) has limit \(\infty \) as \(x \) approaches \(2 \). Then we have to convince every individual that \(f(x) \) is large and positive when \(x \) is close to \(2 \). The first question we have to address is: "what is a large positive number?" Unfortunately, the answer is: it depends on who you ask! That being the case we have to be flexible. We have to let an individual choose what he/she considers to be a large positive number. Let it be \(K \). Then to convince him or her that numbers close to \(2 \) give values that are large and positive, we simply have to produce a punctured interval \((c - \delta, c) \cup (c, c + \delta) \) with the property that every number \(x \) in the interval gives a value \(f(x) \) that is bigger than \(K \). To be in a position of convincing everybody that shows up, we should be able to do this for every positive number \(K \). This suggests the following definition:
A function $f(x)$ has limit ∞ as x approaches a number c if, given any positive number K, we can find a positive number δ such that $f(x) > K$ for all x in $(c-\delta, c) \cup (c, c+\delta)$.

Alternatively:

A function $f(x)$ has limit ∞ as x approaches a number c if, given any positive number K, we can find a positive number δ such that $f(x) > K$ if $0 < |x-c| < \delta$.

In the case of $f(x) = \frac{1}{(x-2)^2}$, let $K > 0$ be given. We have to find a positive number δ such that $\frac{1}{(x-2)^2} > K$ if $0 < |x-2| < \delta$. This inequality is satisfied by any x such that $|x-2| < \frac{1}{\sqrt{K}}$.

It follows that if we take any $\delta < \frac{1}{\sqrt{K}}$ then $\left| \frac{1}{(x-2)^2} \right| > K$ if $|x-2| < \delta$.

11. Complete the following precise definition of an infinite limit as x approaches a number from above:

A function f has limit 1 as x approaches a number c from above if given any positive number K, we can find a positive number δ such that ...

Use the above precise definition to show that $f(x) = \frac{1}{\sqrt{x}}$ has limit ∞ as x approaches 0 from above.

12. A precise definition of a limit as x approaches ∞ or $-\infty$: As we pointed out, a function $f(x)$ has limit ∞ as x approaches ∞ if every number x that is large and positive gives a value $f(x)$ that is close to 0. Using the idea of a large positive number developed in Exercise 10 above, a precise way of saying this is the following:

A function $f(x)$ has limit l as x approaches ∞ if given any positive number ε we can find a positive number K such that $|f(x) - l| < \varepsilon$ when $x > K$.

A function $f(x)$ has limit m as x approaches $-\infty$ if given any positive number ε we can find a positive number N such that $|f(x) - m| < \varepsilon$ when $x < -N$.

For an example, we show that $f(x) = \frac{2x}{x-3} + 1$ has limit 2 as x approaches ∞. To this end, let $\varepsilon > 0$. We have to find a positive number K such that $\left| \frac{2x}{x-3} - 2 \right| < \varepsilon$ when $x > K$. We simplify the inequality to get

$$\left| \frac{6}{x-3} \right| < \varepsilon$$

This is satisfied if $|x-3| > \frac{6}{\varepsilon}$. We may assume that $x > 3$. Then $x - 3 > \frac{6}{\varepsilon}$, which simplifies to $x > 3 + \frac{6}{\varepsilon}$. Therefore if we take any $K > 3 + \frac{6}{\varepsilon}$ then $\left| \frac{2x}{x-3} - 2 \right| < \varepsilon$ when $x > K$.

(a) Use the precise definition of a limit as x approaches ∞ to show that $f(x) = \frac{x}{3x+1}$ has limit $\frac{1}{3}$ as x approaches ∞.

(a) Use the precise definition of a limit to show that $g(x) = \frac{4x-1}{x^2} + 1$ has limit 4 as x approaches $-\infty$.

4